

DOu Certified Tester in DevOps -
Foundation Level (DOu CTD-FL)

Syllabus

Version 1.2 2021

DevOps United

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 2 of 52

Copyright Notice

This document may be copied in its entirety, or extracts made, if the source is
acknowledged.

All DevOps United syllabus and linked documents including this document are
copyright of DevOps United (hereafter referred to as DOu).

The material authors and international contributing experts involved in the
creation of the DOu resources hereby transfer the copyright to DevOps United
(DOu). The material authors, international contributing experts and DOu have
agreed to the following conditions of use:

● Any individual or training company may use this syllabus as the basis for

a training course if DOu and the material authors are acknowledged as
the copyright owner and the source respectively of the syllabus, and they
have been officially recognized by DOu. More regarding recognition is
available via: https://www.devops-united.com/dou-ctd

● Any individual or group of individuals may use this syllabus as the basis
for articles, books, or other derivative writings if DOu and the material
authors are acknowledged as the copyright owner and the source
respectively of the syllabus.

Thank you to the main authors:

● Yaron Tsubery, Vipul Kocher, Umang Agarwal and Sreevatsa
Sreerangaraju

Thank you to the review committee
Abdón Sandoval, Aldo Zarza, Alexander Allan, Ángel Rayo Acevedo, Anshu
Khandelwal, Arjan Brands, Aurelio Gandarillas Cordero, Bart Knaack, Beatriz
López Botello, Christine Green, Claudia Trujillo, Claudio Caravajal Z., Cristián
May Jara Segura, Cristian Valdebenito Esponosa, Emilie Potin-Suau, Geoffrey
Wemans, Girts Baltaisbrencis, Guino Henostroza, Gustavo Marquez Sosa,
Héctor Ruvalcaba, Héctor Santa María Bravo, Javier Chávez, Javier Rojas
Cuturrufo, Jean-Luc Cossi, José Antonio Rodriguez, José M. Díaz Delgado, Juan
Pablo Rios Alvarez, Julie Gardiner, Julio Córdoba Retana, Karolina Zmitrowicz,
Kimmo Hakala, Kyle Alexander Siemens, Laksh Ranganathan, Mani Ananth,
Manuel Fischer, Matthias Rasking, Maximiliano Mannise, Michel Dussouchaud,
Miguel Angel De León Trejo, Mirco Hering, Miroslav Renda, Norhayati Suzari,

https://www.devops-united.com/dou-ctd

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 3 of 52

Orane Findley, Paul Mowat, Petr Neugebauer, Radhika Kundur, Ralf Pichler,
Richard Seidl, Rik Marselis, Roberto Carlos Galicia Galicia, Samuel Ouko,
Sebastian Małyska, Sergio Emanuel Cusmai, Sergio von Borries, Shantel
Stewart, Silvia Nane, Sittichai Udomchokpiti, Søren Wassard, Thomas Cagley,
Tim Moore, Valeria Cocco, Vanessa Islas Padilla, Vikas Thakur, Wim Decoutere
& Wouter Ruigrok.

Revision History
Version Date Remarks
DOu A 2019 March 2, 2019 First beta release
DOu B 2019 May 8, 2019 Second beta release
DOu 1.0R 2019 July 16, 2019 First release for review
Version 1.01R 2019 September 3, 2019 Second Review Release
Version 1.03D 2019 January, 2020 Updated Review Release
Version 1.1 2020 April 9th, 2020 First Release
Version 1.2 2021 March 23rd, 2021 Second Release

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 4 of 52

Table of Contents
Purpose of this document 7

Resources of the DOu 7

About DOu Certified Tester in DevOps - Foundation Level (CTD-FL) 7

Business Outcomes 8

Learning Objectives/Cognitive Levels of Knowledge 8

General Prerequisites 9

Programming Language Prerequisites 9

Specific Tools Mentioned in the Syllabus [Disclaimer] 9

Chapter 1 - Introduction to DevOps 11

1.1 DevOps at a Glance 12

1.1.1 History and purpose of DevOps 12

1.2 DevOps concepts 13

1.2.1 Components of DevOps 13

1.2.2 Core principles of DevOps 13

1.2.3 Challenges of DevOps 14

1.3 Continuous Integration 15

1.3.1 Traditional release process vs. delivery pipeline 15

1.3.2 Definition and principles of Continuous Integration (CI) 15

1.3.3 Source code configuration management 16

1.3.4 CI Pipeline and tools 18

1.4 Continuous Delivery (CD) 19

1.4.1 CD - Definition and pipeline 19

1.4.2 Tools in CD 20

1.5 Continuous Deployment 21

1.5.1 Continuous Deployment – definition 21

1.5.2 Continuous Deployment vs Continuous Delivery 21

1.6 Continuous Monitoring 22

1.7 DevOps in various development practices 22

1.7.1 DevOps Culture 22

1.7.2 DevOps and Shift Left 23

1.7.3 DevSecOps, DevTestOps, DevDataOps, etc. 24

1.7.4 DevOps and Agile 24

Chapter 2 - Continuous Testing 25

2.1 Introduction to Continuous Testing 26

2.1.1 Definition and characteristics of Continuous Testing 26

2.1.2 Testing Quadrant for DevOps 27

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 5 of 52

2.2 Test Driven Development (TDD) and DevOps 28

2.2.1 TDD – Definition 28

2.2.2 xUnit Framework 29

2.3 Static Analysis 29

2.3.1 Coding guidelines and other static tests 29

2.4 Dynamic Analysis 30

2.4.1 Code Coverage 30

2.4.2 Memory Leaks 31

2.4.3 Code Performance Measurement 31

2.5 Integration & System Tests 32

2.5.1 Integration & System Test Automation – API Tests 32

2.5.2 System Test Automation – GUI Tests 33

2.6 Acceptance Tests 33

2.6.1 BDD and ATDD 33

Chapter 3 - DevOps specific tests 35

3.1 User specific Feature Testing 35

3.1.1 Internal user 36

3.1.2 Canary Release 36

3.1.3 A/B Testing 36

3.2 Stage Rollout, Dark Launch & Standard Upgrade 36

3.2.1 Stage Rollout 36

3.2.2 Dark Launch 37

3.2.3 Standard Upgrade 37

3.3 Toggles 37

3.3.1 Types of Toggles 37

3.3.2 Functional Tests for Toggle States 38

3.3.3 Non-functional Tests for Toggle States 38

3.3.4 Risks of Using Toggles 38

Chapter 4 - Operations in DevOps 40

4.1 Monitoring Production Systems 40

4.1.1 Monitoring 40

4.1.2 Alerting 40

4.1.3 Testing of Monitors and Alerts 41

4.1.4 Log Testing 42

Chapter 5 - DevOps and Cloud 43

5.1 Introduction to DevOps with Cloud 43

5.1.1 IAAS, PAAS, SAAS 43

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 6 of 52

5.1.2 Fitment of Cloud in DevOps 45

5.1.3 Virtualization and Cloud Computing 45

5.1.4 Application Containerization 45

5.1.5 Virtual Machines and Containers 46

Chapter 6 - Various Tools and Technologies 47

6.1 Infrastructure and Repositories 47

6.1.1 Infrastructure as Code (IaC) 47

6.1.2 Binary Repositories 48

6.1.3 IaC Tools 49

6.1.4 Other Tools 51

References 52

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 7 of 52

Purpose of this document
This syllabus forms the basis of the DevOps United Certified Tester in DevOps
- Foundation Level (CTD-FL) certification. This document defines what you
need to know in order to pass the certification exam for DOu CTD-FL and is
copyright of DevOps United. The certification exam will only cover concepts
and knowledge that are described in this document, although this document
contains practical elements that will not be covered by the certification exam
but is required to be covered in the training.

Resources of the DOu
An overview of DOu resources as well as all relevant information about the
DOu certification and other types of DOu certifications are available on
www.devops-united.com, the official website of DevOps United. The
information to be found on www.devops-united.com includes:

● A complete list of recognized DOu training providers and available
courses. Note that training is recommended but not required in order to
take the DOu CTD-FL certification exam.

● DOu CTD-FL Syllabus (this document) for download.
● A sample exam set of 10 DOu CTD-FL questions with answers, for

training purposes.
● We aim to have the documents available in further languages as soon as

possible. For currently available language versions, please check
www.devops-united.com.

About DOu Certified Tester in DevOps - Foundation Level (CTD-FL)
DOu Certified Tester in DevOps is a foundation specialist level course for
testers involved in DevOps. Our aim at DevOps United is to support you
moving one step further into the Agile world, into the DevOps code-based work
methodology and culture. You will learn how to use new tools and practices to
reduce the traditional distance between programming and systems technicians,
in order to build, test, and release software faster and more reliably. This new
collaborative approach, DevOps, will allow your teams to work closer together,
bringing greater agility to your business and notable increases in your
productivity, enabling you to solve critical issues quickly, and better managing
unplanned work. This is a practical certification that consists of some theory,
and mainly practical, hands-on applications and use of tools, as well as
demonstrations, groups and/or individual exercises.

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 8 of 52

Business Outcomes
BO-1 Understand the business and technology drivers, as well as the

methodologies and practices used by DevOps and Continuous
Movement in order to create a test strategy

BO-2 Identify and understand the influence of testing on the DevOps
movement, how testing is implemented in DevOps and how
DevOps fits in various SDLCs

BO-3 Apply automated deployments and automated continuous testing
into continuous integration and continuous delivery workflows

BO-4 Apply test types and levels specific to DevOps cycles
BO-5 Apply through hands-on exercises and the interactive practice use

of configuration management, continuous: testing, integration,
deployment, delivery and monitoring, implementing common
DevOps tools such as Dockers, Jenkins, Puppet-Chef/Ansible,
Nagios, Cucumber, Selenium, Git/GitHub

BO-6 Understand the basics of Cloud Computing and how it is useful
in DevOps

BO-7 Understand the direction and trends related to the future of
continuous testing

Learning Objectives/Cognitive Levels of Knowledge
Learning objectives (LOs) are brief statements that describe what you are
expected to know after studying each chapter. The LOs are defined based on
Bloom’s modified taxonomy as follows:

● K1: Remember. Some of the action verbs are Remember, Recall, Choose,
Define, Find, Match, Relate, Select

● K2: Understand. Some of the action verbs are Summarize, Generalize,
Classify, Compare, Contrast, Demonstrate, Interpret, Rephrase

● K3: Apply. Some of the action verbs are Implement, Execute, Use, Apply

For more details of Bloom’s taxonomy, please refer to [BT1] and [BT2] in
References.

Hands-on Objectives
Hands-on Objectives (HOs) are brief statements that describe what you are
expected to perform or execute to understand the practical aspect of Learning.

The HOs are defined as follows:

● HO-0: Live demo of an exercise or recorded video

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 9 of 52

● HO-1: Guided exercise. The trainees follow the sequence of steps
performed by the trainer

● HO-2: Exercise with hints. Exercise to be solved by the trainee utilizing
hints provided by the trainer

● HO-3: Unguided exercises without hints

General Prerequisites
Mandatory

● None

Recommended
● ISTQB® Certified Tester Foundation Level (CTFL) or equivalent
● Basic knowledge of any programming language - Java/Python/R
● Basic knowledge of statistics
● Some software development or testing experience

Programming Language Prerequisites
Required

● Basic knowledge of programming. Understanding of Variables, Functions,
Methods, Control Structures (Conditionals and Loops), memory
management.

● Basic knowledge of scripting languages.
● Basic knowledge of operating tools such as Selenium, Java, JUnit as well

as of basic DevOps tools.
● Basic knowledge of HTTP protocol. Understanding of HTTP

Request/Response, and the main elements involved, like Cookies, URL,
Parameters, Methods (GET, POST), Headers and Body.

● Basic knowledge of system architecture. Understandings of Web
architectures based in layers (Client/Server).

Recommended

● Basic knowledge of SOAP/REST and XML/JSON and/or Web Services or
Microservices.

Specific Tools Mentioned in the Syllabus [Disclaimer]
The tools mentioned in the syllabus are used solely as examples. These tools
represent some of the most commonly used ones at the time of releasing this
syllabus.

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 10 of 52

This syllabus’ focus is on concepts. Therefore, specific tools are used only as
the means to demonstrate those concepts, or to perform hands-on exercises.
The syllabus does not aim to promote any tool over any other or support any
company that produces tools over any other. During training or otherwise, if
other suitable alternatives are available, anyone is welcome to use them as well.

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 11 of 52

Chapter 1 - Introduction to DevOps

Keywords: DevOps, DevSecOps, DevTestOps, DevArchOps, DevWinOps,
Pipelines, Continuous Integration (CI), Continuous Deployment, Continuous
Delivery (CD), CI/CD, System Center Configuration Manager (SCCM), Shift
Left, Software Repository, Code Repository, Branching Strategy, Merging, Test
Driven Development (TDD), Behavior Driven Development (BDD), Acceptance
Testing Driven Development (ATDD), Specification by Example (SBE).

LO # Description

LO-1.1.1 Recall the purpose of DevOps (K1)

LO-1.2.1 Explain the components of DevOps (K2)

LO-1.2.2 Recall the core principles of DevOps (K1)

LO-1.3.1 Compare the traditional release process with the delivery
pipeline (K2)

LO-1.3.2 Explain the concept of Continuous Integration (CI) and the
advantages it offers (K2)

LO-1.3.3 Explain SCCM Concepts: Repositories, Check-in/Check-out,
Versioning, Branches, Merging, conflict resolution, working in
teams, branching strategies (K2)

LO-1.3.4 Explain CI pipeline and how tools help set up a CI pipeline (K2)

LO-1.4.1 Explain Continuous Delivery (CD) and the advantages it offers
(K2)

LO-1.4.2 Recall the tool types used in continuous delivery (K1)

LO-1.5.1 Recall the purpose of continuous deployment (K1)

LO-1.5.2 Compare continuous deployment with continuous delivery (K2)

LO-1.7.1 Recall the main DevOps culture and mindset aspects as well as
their importance (K1)

LO-1.7.2 Recall the main reasons why the Shift Left principle
contributes to the DevOps (K1)

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 12 of 52

LO-1.7.3 Recall various DevOps-related terms, such as DevSecOps,
DevTestOps, etc. (K1)

LO-1.7.4 Understand how DevOps and Agile fit together (K2)

HO # Description

HO-1.2.3 Demonstrate the challenges of DevOps (HO-0)

HO-1.3.3 Demonstrate how to apply the main features of a configuration
management tool: check-in, check-out, merge, conflict
resolution, branching (HO-0)

HO-1.3.4 Create a simple pipeline for code compilation based on trigger
from code check-in (HO-1)

HO-1.5.2 Demonstrate how to apply the main features of continuous
delivery and deployment tools (HO-0)

HO-1.6.0 Demonstrate the main monitoring elements in tools, such as
Nagios or Grafana (HO-0)

1.1 DevOps at a Glance
DevOps is a software engineering culture and practice that aims at unifying
software development (Dev) and software operation (Ops). DevOps is a set of
practices that combine software development and IT operations to shorten
products or the systems development life cycle.

1.1.1 History and purpose of DevOps
LO-1.1.1 Recall the purpose of DevOps (K1)

DevOps initiated after the concepts of fast, multiple, and successful deliveries
were presented at the 2009 Velocity conference. The name DevOps was coined
to refer to the concept of arranging/creating an infinite cycle between
development and operation organizations, in order to enable smooth and
incremental product development and delivery cycles.

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 13 of 52

In 2009, the first conference on the topic, DevOpsDays, was held in Ghent,
Belgium. The conference was founded by Belgian consultant, project manager
and agile practitioner Patrick Debois.

The main characteristic of the DevOps movement is to strongly advocate
automation and monitoring at all steps of software construction, from
integration, testing and releasing to deployment and infrastructure
management. DevOps aims at shorter development cycles, increased
deployment frequency, and more dependable releases, in close alignment with
business objectives and customers.

1.2 DevOps concepts
The concept of DevOps is founded on building a culture of collaboration
between teams that historically functioned in relative siloes.

1.2.1 Components of DevOps
LO-1.2.1 Explain the components of DevOps (K2)

The key components of DevOps are:

● Automatic delivery of the pipeline
● Configuration management system/solution
● Regular continuous integration
● Automated monitoring and health checks
● Regular continuous delivery
● Infrastructure as a code

1.2.2 Core principles of DevOps
LO-1.2.2 Recall the core principles of DevOps (K1)

The core principles of DevOps are:

● Customer Centric Action
● Create with the End in mind

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 14 of 52

● End-to-end responsibility
● Cross-functional autonomous teams
● Continuous feedback
● Continuous integration and deployment
● Continuous improvement
● Continuous experimenting and learning
● Automate everything you can

1.2.3 Challenges of DevOps
HO-1.2.3 Demonstrate the challenges of DevOps (HO-0)

There are many challenges that DevOps is aimed to solve, such as:

● Manual testing
● Test data
● No service virtualization
● Lack of Configuration Management system
● No integrated tools architecture
● Planning in a DevOps environment
● Inconsistent environments
● No production-like environments
● Limited feedback from customers
● Issues in the collaboration between development and operations
● Issues in the collaboration across all product-related departments
● Elicitation of non-functional requirements
● Manual deployments
● Manual releases
● Large releases

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 15 of 52

● Lack of DevOps metrics
● Lack of traceability across the DevOps landscape

1.3 Continuous Integration

1.3.1 Traditional release process vs. delivery pipeline
LO-1.3.1 Compare the traditional release process with the delivery

pipeline (K2)

Traditional release management includes planning, scheduling, monitoring, and
controlling a software built at various stages and in different environments.
Nevertheless, it may come in many different flavors. Release management
guarantees that the production deployments are well orchestrated and follow all
the necessary steps to ensure the proper visibility and approvals are obtained
throughout the process.
The DevOps, process allows teams to have, or better said, take control over
production deployments. The team is, of course, creating working code, but also
focusing on the infrastructure, network, and other implementation items
necessary to get their code into production. These teams are in charge to create
code with higher quality as they take the overall responsibility to have the
production systems more reliable and maintainable.
In DevOps, the teams use the data pipeline. It is a set of data processing
elements connected in series, where the output of one element is the input of
the next one. The elements of a pipeline are often executed in parallel or in the
time-sliced fashion. This enables the team to manage it better, utilize its
timeline and provide more optimized and controlled delivery cycles.

1.3.2 Definition and principles of Continuous Integration (CI)
LO-1.3.2 Explain the concept of Continuous Integration (CI) and the

advantages it offers (K2)

The “continuous” movement consists of the two main approaches, which have
merged into what today we call CI/CD. The CI is mainly the practice of
merging all the code implemented by the developer(s) and ready to be merged
(the work-in-progress code) to a centralized (master) code branch, usually
several times a day.

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 16 of 52

CI stands for Continuous Integration and CD for Continuous Delivery, as well
as for Continuous Deployment, which immediately follows.
The CI includes additional processes/mechanisms for making quicker, more
reliable deliveries, besides the traditional release process and activities.

The main advantages of the CI pipeline while using smaller deliverable pieces
are to:

● Help achieve continuous momentum
● Help catch defects early
● Make defect isolation easier
● Help reduce the costs by automation

The CI/CD are the main enablement rings in the DevOps chain and the main
contributors to achieve the DevOps objectives. The long traditional process was
broken down by the CI/CD approach into smaller controlled deliverable pieces,
to keep the continuous momentum.
The main principle of Continuous Deployment is to enable any new piece of
code that passes the related automated tests to be deployed.
The agile movement has set the stage for DevOps, which drives the concept of
agile even further, allowing for faster development, while enriching the agile
methodology with lots of tools that collaborate and harmonize to achieve a
better continuous solution.

1.3.3 Source code configuration management
LO-1.3.3 Explain SCCM concepts: Repositories, Check-in/Check-out,

Versioning, Branches, Merging, conflict resolution, working in
teams, branching strategies (K2)

HO-1.3.3 Demonstrate how to apply the main features of a configuration

management tool: check-in, check-out, merge, conflict
resolution, branching (HO-0)

One of the most important and key factors in DevOps is to rely on a robust
source code and configuration management (CM) basis.

The SCCM concept or the idea of a central system that manages the
configuration management of the code, from its creation till delivery,

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 17 of 52

production, maintenance, etc. is to have all the necessary steps managed and
controlled in one place. The SCCM suite consists of several parts, among which
you may find the following key modules and features:

Repositories: The code that developers write is part of an important set of
information. Repositories keep and store this information for further use, for
restoration, for retrospective aspects, etc. The repositories represent these
storages and code holders.

Check-in/Check-out: A programmer writes new code or maintains an existing
one. The action of pooling the code from the repository in order to work on it is
called “check-out the code”. Any time that the programmer decides that the
work is completed and there is a need to store it back as a new or updated
piece of code to the main branch repository so that code can be reviewed, the
programmer performs an action called “check-in the code”.

Versioning: Versioning is used to label (give a name or number or the
combination of name and number) a piece of code that is developed as a
program or set of programs – e.g., package. This label represents the name of
this specific item or package. The version is a specific reference, which enables
the various stakeholders of the products or systems to communicate about them
– and allows them to associate the program/product/system with the code that
is stored and has the same label. A unique version of the same element (file,
document, library, etc.) enables us to have this element available in several
versions at the same time and see its involvement.

Branches & branching strategies: A branch is a copy of a piece of source code
that allows programmers to develop two versions separately. Branching is a
technique utilized to make a copy of the source code in order to create two
versions of it, that are developed separately. There are various forms of
branching, which can be used to provide a service pack to the customer or a
new generation of the product. These kinds of situations require the DevOps
team to make a choice, regarding which branching strategy to implement.

Merging: Many branches could possibly be altered by the programmers from
the same main branch of code in some cases. For example, the main branch is
version 1.2.x, but there are a few development teams that work with this
version/branch as a baseline for updating their code, so these are new branches
under the main one which is version/branch 1.2.x. This situation, over time,
creates complexity, as the code may vary between the new branches that are
being created in parallel or from each other. In order to get back to a single
place, assembling them all together back in the main branch is required. This
activity of reassembling the branches to the main one is named merging.

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 18 of 52

Conflict resolution: If a failure occurs during the merging process, it indicates
a conflict between the current local branch and the branch that is being
merged, meaning there is a conflict between the code we wish to merge and
another developers’ code. The tools available today do their best to merge the
code files but leave the conflicts arising the merging process to be resolved
manually by the person who operated it.

Working in teams: The programs or systems are usually developed by more
than one developer, usually working in a team – in Agile, we may find it in the
Scrum team for example. This usually results from the need to have the product
or systems ready faster or, where different parts of the system require different
programming skills, the development department is divided into teams.
Different developers, or even teams may work on the same code – for example,
one team may be in charge of the maintenance releases and the other one of
new features, etc. The source code and configuration management tools or
suites must enable the harmonization of this parallel way of working.

1.3.4 CI Pipeline and tools
LO-1.3.4 Explain CI pipeline and how tools help setup a CI pipeline (K2)

HO-1.3.4 Create a simple pipeline for code compilation based on trigger

from code check-in (HO-1)

The CI (Continuous Integration) pipeline is the main backbone in the
environment of DevOps. The CI is the first step in the CI/CD in DevOps, then
follows the second step which is the CD (Continuous Delivery). Together, they

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 19 of 52

bridge the gap between the development and the operations sides. A complete
CI pipeline consists of three major parts:

● Integrate the code

● Build the code

● Run the unit tests

In order to support bridging this gap, DevOps offers a process consisting of
several stages. Each stage is supported by a set of tools that complement each
other, and that support the required technologies or tools used in the previous
stage.
In order to orchestrate the operation of these stages, the DevOps team uses
tools named schedulers (e.g., Jenkins, Github, etc.).

1.4 Continuous Delivery (CD)

1.4.1 CD - Definition and pipeline
LO-1.4.1 Explain Continuous Delivery (CD) and the advantages it offers

(K2)

Continuous Delivery (CD) is part of the DevOps method. It consists of stages
driven by pipelines, which are designed for businesses that aim to improve
applications as well as systems frequently and thus require a reliable delivery
process.

The main benefit of CD is that it enables the deployment of code changes to the
production in an automated way. This is done by enhancing continuous
integration with automated tests and automated deployment once the tests have
been cleared.

Continuous integration is enhanced with automated tests and deployment.

An additional advantage of this approach is that it forces the members of a
DevOps team to produce software in such a manner that the software can be
readily/continuously released whenever required. The entire activity is
performed in a sequence of small repetitive cycles. These small repetitive cycle
techniques allow the provisioned code to get any type of change incorporated
(such as software enhancement, configuration changes, defect fixes, etc.)
quickly, in an efficient and sustainable way.

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 20 of 52

CD requires the automation of the application and system delivery processes
with the intent to deploy integrated code into production without critical bugs
or delays. The implementation process in the CD stages helps developers
merge the new code they have created or changed with the main branch in a
consistent way, so they can build an immediate release-ready product.

1.4.2 Tools in CD
LO-1.4.2 Recall the tool types used in continuous delivery (K1)

The growth of DevOps on the market and the need for fostering the CI/CD
require that the number of tools that support the CI/CD stages increase and
that new code needs to be deployed instantly to the production. These tools are
the components of a delivery pipeline that constitutes continuous delivery; they
are either serving the CI stages or the CD stages, or both and they have
different types and features combinations. They support these stages within the
technology and/or domain that the applications or systems consist of, such as
web-based, Microsoft-based, Linux-based, Cloud-based applications, etc.

In addition to the above, most are designed to lower the entry threshold to
DevOps, by increasing agility, shortening releases timelines, improve the
reliability of the software and stay ahead of the competition.

The best-known CD tools on the current market are:

Buddy: is a CI/CD tool for web developers, designed to lower the entry
threshold to DevOps. It uses delivery pipelines to build, test and deploy
software. In addition, it employs Docker containers [see more info about
containers in 5.1.4 of this syllabus] with pre-installed languages and frameworks
for builds, alongside DevOps, monitoring, and notification actions.

Buildbot: is a software development continuous integration tool which
automates the compile or test cycle required to validate changes to the project
code base. It is an open-source framework developed in Python.

Urbancode deploy: is a multitier application model or product of IBM. It
provides continuous delivery, self-service, rapid feedback, and incremental
updates in the agile environment, and automates the application deployments in
a consistent manner. Developers can also roll back the applications, organize
the changes across servers, tiers, and components.

Codeship: is a powerful tool that automates the development and deployment
workflow. Codeship triggers this automated workflow by simply pushing to the

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 21 of 52

repository. Parallel runs of tests are completed with the ParallelCI feature of
CircleCI.

Strider: is an open-source CI/CD platform. It is written in Node.JS/JavaScript
and uses MongoDB. It is published under the BSD license. It supports different
plugins that modify the database schema & user interface and register HTTP
routes. An extensible framework triggers builds and deployments. It is
integrated to many projects like GitHub, BitBucket, Gitlab, etc.

Solano Labs: is also a CI/CD tool that works in the Software as a Service (SaaS)
manner of cloud computing. Using Solano, the user can use many languages
and frameworks for writing their code and for testing. It can be integrated with
other projects, like Github.

Semaphore: supports many languages and frameworks and can be integrated
with Github. It performs automatic testing and deployment. Using collaboration,
users can invite other collaborators who are all copied from Github.

Wercker: is a tool which automates builds and deploys the container. It creates
a unique automated pipeline (build and deploy pipelines) that are executed
through the command line interface. It provides the micro-services, which
means it triggers the pipelines whenever any new code is committed.
Wercker’s Docker Stack performs processing very fast and avoids any threat or
error. It isolates the applications and services from the operating system.

1.5 Continuous Deployment

1.5.1 Continuous Deployment – definition
LO-1.5.1 Recall the purpose of continuous deployment (K1)

Continuous deployment is a strategy for software applications or systems
releases wherein any code commit that passes the automated testing phase is
automatically released into the production environment, making changes that
are visible to the software’s users.

1.5.2 Continuous Deployment vs Continuous Delivery
LO-1.5.2 Compare continuous deployment with continuous delivery (K2)

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 22 of 52

HO-1.5.2 Demonstrate how to apply the main features of continuous
delivery and deployment tools (HO-0)

Continuous deployment means being ready and able to continually deploy,
whereas continuous delivery is a state of being ready and able to release any
version at any time on any platform.

Both exist in the agile process that provides a framework where there are
small, frequent changes, and where feedback is obtained quickly.

In some organizations, DevOps practices such as CI/CD are implemented so
that CD refers to both continuous delivery and continuous deployment.

1.6 Continuous Monitoring
HO-1.6.0 HO-1.6 Demonstrate the main monitoring elements in tools,

such as Nagios or Grafana (HO-0)

Continuous monitoring in DevOps refers to both the process and the technology
which are required to include monitoring across each phase of the company’s
DevOps and IT operations lifecycles. This method helps to continuously ensure
the health, performance, and reliability of the applications and/or systems and
their infrastructure as it moves from development to production.

A reliable continuous monitoring is enabled and simplified through the
utilization of best practice tools. These best practice tools are the tools that are
most relevant at the time the user considers using them (at the time of
publishing this document, tools such as Nagios, Grafana and Raygun).

1.7 DevOps in various development practices
1.7.1 DevOps Culture
LO-1.7.1 Recall the main DevOps culture and mindset aspects as well as

their importance (K1)

Most companies are organized in three distinct teams: development, testing and
operations. Each has their own interests, goals, and methodologies. This

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 23 of 52

separation often results in miscommunication, delays, and tension. The main
characteristic of the DevOps culture is that it improves the collaboration
between the R&D (which include development & testing) and operations roles.

The main cultural aspects and mindset of DevOps are the increased
collaboration between the departments, a lesser tendency to work in silos, lean
work while sharing responsibility, emphasizing teams’ autonomy, improving
quality, embracing failure while valuing feedback and increasing automation.
Many of the DevOps values are agile values, as DevOps is an extension of
agile.

1.7.2 DevOps and Shift Left
LO-1.7.2 Recall the main reasons why the Shift Left principle

contributes to the DevOps (K1)

The term Shift Left refers to a practice in software development in which teams
focus on the quality of their products, as well as work on problem prevention
instead of detection, and begin testing as early as possible. An important aspect
in shifting left is static testing, in which it is required to review all sorts of
inputs for the DevOps teams such as user stories, interface descriptions, and
other defining and designing documents, before any code can be created, in
order to prevent that faults are being copied and thus wrong code is built.
Besides, it adds more static code analysis tools to assist testing the code earlier.
Shifting Left also requires the following key DevOps practices: continuous
testing and continuous deployment. There are several methods and approaches
in software development which are supporting this stage, such as Test-Driven
Development (TDD), Acceptance Testing Driven Development (ATDD),
Behavior Driven Development (BDD), Specification by Example (SBE), etc. This
means that developers join the testing cycles as early as possible in order to
prevent problems that, in the past, were detected later and caused delays. The
earlier we test, the earlier we detect issues and problems. The above continuous
activities methods assist in reducing costs showing up at late testing phases
and help provide faster feedback on a change.

The key principles for Shift Left are:

● Test early
● Earlier feedback on customer-oriented use cases
● Test often

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 24 of 52

● Test incrementally way
● Reduce the cost

1.7.3 DevSecOps, DevTestOps, DevDataOps, etc.
LO-1.7.3 Recall various DevOps-related terms, such as DevSecOps,

DevTestOps, etc. (K1)

DevOps evolved over the years and more requirement engineering and process
related stages have been incorporated into its frame and have been coined
DevOps manner, such as: DevSecOps (for security), DevTestOps (for testing),
DevDataOps (for data), DevArchOps (for architecture) and DevWinOps (for MS-
centric).

1.7.4 DevOps and Agile
LO-1.7.4 Understand how DevOps and Agile fit together (K2)

“Agile is the ability to create and respond to change. It is a way of dealing with,
and ultimately succeeding in, an uncertain and turbulent environment” (Agile
Alliance).

In agile, teams are being requested to move faster – introducing enhancements
and corrections rapidly and faster – as well as reducing the length of time
leading to delivery, while continuing to improve the quality of each release.

The DevOps values and culture are agile-based, and each DevOps stage better
defines the required action that the teams need to take as well as the set of
tools or suites that support these stages and enable the agile teams – among
them the DevOps team – to work faster, in a more decisive and reliable
manner. The DevOps approach is serving both process-wise and technically-
wise the agility that agile is preaching.

Both agile and DevOps share a common goal, which is to improve the speed
and quality of value delivery. The difference is that agile aims to optimize
software development specifically but does not take into consideration the other
parts of the value stream/chain that come after the development cycles
– DevOps definitely does.

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 25 of 52

Chapter 2 - Continuous Testing

Keywords: Continuous Testing, Testing Quadrant, Static Analysis, Code
Coverage, Memory Leak, Performance Measurement, Test Driven Development
(TDD), Behavior Driven Development (BDD), Acceptance Testing Driven
Development (ATDD), CI Pipeline, DevOps Pipeline, System Under Test (SUT)

LO-2.1.1 Recall the main characteristics of continuous testing (K1)

LO-2.1.2 Understand the modifications to the testing quadrant for
DevOps (K2)

LO-2.2.1 Explain Test Driven Development (TDD) and its advantages
(K2)

LO-2.2.2 Apply a xUnit framework for performing TDD (K3)

LO-2.3.1 Explain the main features of a static analysis tool (K2)

LO-2.4.1 Explain the main features of a code coverage tool (K2)

LO-2.4.2 Explain the concept of memory leaks detection (K2)

LO-2.4.3 Explain the main tasks of a code performance measurement
tool (K2)

LO-2.5.1 Integrate API tests in a CI pipeline (K3)

LO-2.5.2 Integrate a GUI automation test tool in a CI pipeline (K3)

LO-2.6.1 Integrate a behavior-driven development tool in DevOps
pipeline (K3)

HO # Description

HO-2.2.2 Perform a guided exercise of creating tests using the xUnit
framework against a given code (HO-1)

HO-2.3.1 Demonstrate how to integrate a static analysis tool into a
DevOps pipeline (HO-0)

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 26 of 52

HO-2.4.1 Perform an exercise providing a hint of integrating a static
analysis tool in the DevOps pipeline and checking the test
coverage of a given code and its tests (HO-2)

HO-2.4.2 Demonstrate how to Integrate a memory leak detection tool in
DevOps pipeline (HO-0)

HO-2.4.3 Demonstrate how to Integrate a code performance
measurement tool into a DevOps pipeline (HO-0)

HO-2.6.1 Demonstrate how to integrate a behavior-driven development
tool into the DevOps pipeline (HO-0)

2.1 Introduction to Continuous Testing

2.1.1 Definition and characteristics of Continuous Testing
LO-2.1.1 Recall the main characteristics of continuous testing (K1)

Continuous testing is the process of executing automated tests as part of the
software delivery pipeline to obtain immediate feedback on the business risks
associated with a software release candidate. The main objectives of continuous
testing are to test as early and as often as possible. Understanding the variety
of tests that need to be covered, considering the main objectives of the
continuous testing, and having the right understanding of how to implement
them together in the project, help better define the relevant test strategy for
this project.
The main characteristics of continuous testing require the following:

● Independent micro (atomic) test cases
● Independence between the tests – to reduce dependencies as much as

possible
● Fully automated test environment – having that part of the System Under

Test (SUT) as well as testing solutions
● Strong configuration management system to support the evolution of the

tests and the automation test solutions to be aligned with the
development of the SUT

● Ability to trigger any kind of tests or test types or test levels (different
level or mix of levels) – which may also be found in the testing pyramid
– against a different environment, different release, or version, etc.

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 27 of 52

● Understanding that testing is a required activity and not just a phase in
the development life cycle.

2.1.2 Testing Quadrant for DevOps
LO-2.1.2 Understand the modifications to the testing quadrant for

DevOps (K2)

The Testing Quadrants driven by agile provide a taxonomy in which teams
identify, plan, and execute the needed tests. These testing quadrants are both
business (user perspective) and technology (developer perspective) facing, they
are either manual or automated or the combination of both.

The four testing quadrants are the following:

Quadrant Q1: These are technology-facing tests that are mainly aimed to
support the team and development driven methods, such as Unit tests, API

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 28 of 52

tests, Web Services testing, and Component Tests that improve product design.
Tests in Q1 are often associated with automated testing and continuous
integration.

Quadrant Q2: These are business-facing tests that are mainly aimed to support
the team and development driven methods as well, such as those used for
Functional Testing, Story Tests, Prototypes, and Simulations that make sure the
software products are properly aligned with the business. Tests in Q2 are often
executed using both automated and manual testing.

Quadrant Q3: These are business-facing tests which are used to evaluate or
critique the product; mainly covering tests such as exploratory testing,
scenario-based testing, usability testing, user acceptance testing, and alpha/beta
testing and can involve product demos designed to get feedback from actual
users. Tests in Q3 are often executed using manual testing.

Quadrant Q4: These are technology-facing tests which are used to evaluate or
critique the product; covering tests such as performance, load, stress, and
scalability tests, security tests, maintainability, memory management,
compatibility and interoperability, data migration, infrastructure, and recovery
testing. Tests in Q4 are often automated.

The main modification in the DevOps quadrants is to automate as much as
possible and have the tools that support automation, so these quadrants work
together in a more harmonized way.

2.2 Test Driven Development (TDD) and DevOps

2.2.1 TDD – Definition
LO-2.2.1 Explain Test Driven Development (TDD) and its advantages

(K2)

The DevOps approach and method encouraging the TDD (Test-Driven
Development) approach mainly in a sense of fail fast, fail cheap, has led to put
also emphasis on BDD (Behavior-Driven Development) [see more info about
BDD in 2.6 of this syllabus], which basically is an agile software development
process that encourages more collaboration between developers, QA and non-
technical or business-oriented participants.

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 29 of 52

The Test-Driven Development (TDD) is a technique implemented by the
developers whereas as a programmer, you must first write the test(s) that in the
end fail(s) before writing a new piece of code. This helps to foster good quality
in the product from early stages.

Some of the advantages of TDD are:

● Maintainable and extensible code
● Tests that can serve as documentation
● Well defined public interfaces
● Easier and safer refactoring
● Better quality of the code
● Time reduction
● Cost saving in the long run
● Executable acceptance criteria

2.2.2 xUnit Framework
LO-2.2.2 Apply a xUnit framework for performing TDD (K3)

HO-2.2.2 Perform a guided exercise of creating tests using the xUnit

framework against a given code (HO-1)

xUnit is a framework, usually consisting of open-source tools, which are
available for the community of programmers who are focused on unit testing.
Tools such as xUnit.net for the .NET Framework, or JUnit for the JAVA
Framework.

2.3 Static Analysis

2.3.1 Coding guidelines and other static tests
LO-2.3.1 Explain the main features of a static analysis tool (K2)

HO-2.3.1 Demonstrate how to integrate a static analysis tool into DevOps

pipeline (HO-0)

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 30 of 52

Static testing consists of several techniques, such as considering design
patterns, performing reviews, operating code analysis tools, implementing
guidelines, etc.

Among these techniques, we may find coding guidelines that have been created
to help detect errors in the early phases of code creation. These guidelines help
reduce the extra cost incurred by the software project, as they are related to
the type of code that the programmers are writing. They aim to have efficient
and effective code by developing in a unified way in order to reduce the
possible waste that may appear at the code changes and maintenance stages.
When coding guidelines are maintained properly, the readability and
understandability of the code increases, thus it reduces the complexity of the
code.

This analysis phase can be automated with static analysis tools. There are many
tools on the market covering most of the programming languages. The main
features addressed by these tools are:

● Checking for adherence to coding guidelines
● Analyzing the code for problematic constructs or potential problem areas

such as pointer conversion, uninitialized variables, dead code, etc.
● Code smells
● Security vulnerabilities checks
● Bad programming practices

2.4 Dynamic Analysis

2.4.1 Code Coverage
LO-2.4.1 Explain the main features of a code coverage tool (K2)

HO-2.4.1 Perform an exercise providing a hint of integrating a dynamic

analysis tool in the DevOps pipeline and checking the test
coverage of a given code and its tests (HO-2)

Code coverage tools assist the developers while implementing and changing the
code. They provide abilities to the developers, in which the main of them are:

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 31 of 52

● to watch and understand how much of their code has been executed
while using the application

● to measure the chosen code coverage type
● to be linked to the source code and the test(s) executed on the code
● to report on the monitored code and indicate which areas of the code,

were (not) covered by the executed tests

2.4.2 Memory Leaks
LO-2.4.2 Explain the concept of memory leaks detection (K2)

HO-2.4.2 Demonstrate how to integrate a memory leak detection tool in

the DevOps pipeline (HO-0)

In order to detect memory leaks, you need to look at the system’s RAM usage
while the code is running and check whether the program releases correctly
the memory that is no longer needed. When the application allocates fresh
memory for an operation and loses the reference to the previous allocation, the
system may run out of memory sooner or later. This results in system memory
getting depleted, slower system responses and eventually a crash or a hang.

Memory leak detection tools help identify the leaks which can then be fixed by
the developers.

2.4.3 Code Performance Measurement
LO-2.4.3 Explain the main tasks of a code performance measurement

tool (K2)

HO-2.4.3 Demonstrate how to integrate a code performance

measurement tool into a DevOps pipeline (HO-0)

The code that is developed by the programmers requires it to be effective,
meaning it needs to do the required functionality, and at the same time be
efficient with the provided resources (such as memory, CPU, disk-space, etc.).
The performance of systems is one of the key indicators for customers’
satisfaction, hence the need for early checks on the performance of the code.
The main metrics and measurements set for the code performance are related

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 32 of 52

to resources consumption, such as memory, CPU disk space, etc. It is also
important to consider the response time (or latency) of the transactions which
the application or the system provide by monitoring and measuring these
transactions and their code parts.

Additional measurements are the error rate in the code, the availability of the
application over time, and, in some cases, the way that garbage collectors are
utilized.

At the level of the code the execution time of various methods is measured
including details like the execution time of loops and the number of times a
loop is executed and so on. This enables code optimization and performance
tuning.

2.5 Integration & System Tests

2.5.1 Integration & System Test Automation – API Tests

LO-2.5.1 Integrate API tests in a CI pipeline (K3)

The Application Programing Interfaces (APIs) are used to connect the different
parts of the application or system. API testing is a type of software testing that
involves testing the APIs directly and as part of integration testing to determine
if they meet expectations for functionality, reliability, performance, and
security. Since APIs do not consist of GUI, API testing is performed at the
communication layer and includes sending types of requests and analyzing
their responses. APIs are either internally or externally used by the application
and system, hence, they will be tested either at the Integration or the System
test level. The most efficient way to test the APIs is to have these tests
integrated in/ to the CI pipelines.

The main steps to perform API tests in a CI pipeline may include the following:

● Build the backend service implementation
● Deploy the backend service to the integration environment
● Deploy the API to the integration environment
● Trigger the execution of the API tests in the deployed environment

(either scheduled in that automatic or ad-hoc sequence)
● Report results

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 33 of 52

2.5.2 System Test Automation – GUI Tests
LO-2.5.2 Integrate a GUI automation test tool in a CI pipeline (K3)

Graphic User Interface (GUI) testing is done mainly at the System test level.
The GUI tests consist of both testing the UI objects as well as the functionality
provided while using the UI by the customers or end users. There are many
tools which enable testers to perform GUI tests. In DevOps, these tools, their
tests, and test content also need to be integrated with the CI pipelines. The
integration of these tests depends on the platforms and operating systems used
to develop and mainly deploy.

The main steps required to integrate the GUI tests to the CI pipeline may
include the following:

● Deploy all the services to the system test environment
● Deploy the GUI tests to the system test environment
● Trigger the execution of the GUI tests in the system test environment

(either scheduled in that automatic or ad-hoc sequence)
● Report results

2.6 Acceptance Tests

2.6.1 BDD and ATDD
LO-2.6.1 Integrate a behavior-driven development tool in DevOps

pipeline (K3)

HO-2.6.1 Demonstrate how to Integrate a behavior-driven development

tool into the DevOps pipeline (HO-0)

Behavior Driven Development (BDD) is a method of developing the features
based on their behavior. The behavior is basically explained in terms of
examples in a very simple language which can be understood by any business
expert (e.g., Gherkin language). The Acceptance Testing Driven Development
(ATDD) is a development methodology that is meant to bring the customer’s
view into the development and testing phases. The entire team, that may
consist mainly of business customers, developers and testers, collaborate to

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 34 of 52

define the acceptance criteria (e.g. of an epic or story) before the
implementation begins. These acceptance tests are supported by proper
examples and other necessary information.

There are DevOps tools available on the market which support the above and
enable the DevOps teams to integrate the related tests to the deployed system
test environment as well as to the production environments (for customer’s pre-
production and production testing stages).

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 35 of 52

Chapter 3 - DevOps specific tests

Keywords: Stage Rollout, Dark Launch, Feature Toggles

LO-3.2.0 Understand the differences between stage rollout, dark launch,
and standard upgrade (K2)

LO-3.3.1 Recall the various types of toggles (K1)

LO-3.3.2 Understand the impact of feature toggles on testing in
production (K2)

LO-3.3.4 Understand risks associated with Toggles (K2)

HO # Description

HO-3.1.0 Demonstrate how user specific feature releases can be made
using one of the various methods – Internal users, Canary
releases, or A/B testing (HO-0)

HO-3.2.2 Demonstrate how dark launch can be implemented for a given
system (HO-0)

HO-3.3.2 Perform a guided exercise of creating several functional tests
for feature toggles and watch how they can be executed on a
given environment (HO-1)

3.1 User specific Feature Testing
HO-3.1.0 Demonstrate how user specific feature releases can be made

using one of the various methods - Internal users, Canary
releases, or A/B testing (HO-0)

Feature Testing is a process created to provide an insight on the changes made
in a software system to add one or more new features or to make modifications
in the already existing features. These features have characteristics that are
designed to be useful, intuitive, and effective.

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 36 of 52

3.1.1 Internal user

Internal user testing opens the feature design process to a wider audience. It
encourages more collaborative work among team members, so that people
acquire a strong design smartness and thoughtful feedback around usability and
design.

3.1.2 Canary Release

Canary release is a technique that is used to reduce the risk of introducing a
new software version in production by gradually rolling out the change to a
small subgroup of users or servers, before rolling it out to the entire
platform/infrastructure and making it available to all of the users.

3.1.3 A/B Testing

A/B testing is a process created in order to compare two versions of a single
variable (e.g. web page, email, or other marketing asset), typically by testing a
subject’s response to variant A against variant B, and determining which of the
two variants is more effective.

3.2 Stage Rollout, Dark Launch & Standard Upgrade

LO-3.2.0 Understand the differences between stage rollout, dark launch,
and standard upgrade (K2)

3.2.1 Stage Rollout

The feature toggle can be set as a system level (meaning for all the users) or
for specific users or groups of users.
This enables efficiency and flexibility in the production testing. This also
creates a possibility for the stage rollout approach, meaning, scaling up (or
down if needed) with the different users that the system contains.
In addition, the staged rollout can only be used for app updates, but not when
publishing an app for the first time.

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 37 of 52

3.2.2 Dark Launch

HO-3.2.2 Demonstrate how dark launch can be implemented for a given
system (HO-0)

The ability to develop microservices in an independent approach (e.g., backend
service and frontend service – GUI), creates situations where the functionality
and business logic side (e.g., backend) are ready, and can be stabilized till the
frontend (e.g., GUI) is ready. This is known as dark launch of functionality, and
requires tests at this level, mainly to ensure that this part is stable, running
correctly and in a robust way.

3.2.3 Standard Upgrade

Standard upgrade is usually escorted by a procedure, either done manually or
automatically, or a combination of both. The standard upgrade may require
restarts of machines or services in the system, as well as, occasionally, a full or
partial downtime of the system or its parts.

3.3 Toggles
The DevOps specific tests are related to the DevOps approach and to the way
the features are developed. A good example of the ability to control the
appearance or enablement of a feature is the Feature Toggles method and
approach. The feature toggles allow the developer to enable or disable the
feature easily, either for testing purposes or for real deployment ones. The
feature toggles approach creates flexibility while we test, because we can set
these toggles (enable or disable them) to have the feature running or not. The
flexibility also exists in a situation where the feature is not fully ready to be
deployed, hence, through the toggle we can disable it without rolling back or
touching the code. It is important to ensure that the feature has no impact on
other features when disabled. The feature toggles can be set as a system level,
as mentioned above, at the Stage Rollout.

3.3.1 Types of Toggles
LO-3.3.1 Recall the various types of toggles (K1)

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 38 of 52

There are several types of toggles, such as: release, permanent, Ops,
permission and experiment.

3.3.2 Functional Tests for Toggle States
LO-3.3.2 Understand the impact of feature toggles on testing in

production (K2)

HO-3.3.2 Perform a guided exercise to create several functional tests for
feature toggles and watch how they can be executed on a given
environment (HO-1)

The types of toggles that are mentioned may be tested while toggle is off, on, or
in the on-then-off modes. The tests can also combine the different toggles, as
well as the different types of users that can exist for each toggle or combination
of toggles.
In addition, the feature toggles approach creates flexibility while testing as well
as if the feature is not fully ready to be deployed on production. The feature
toggle can be set as a system level (meaning for all the users) or for specific
users or groups of users.

3.3.3 Non-functional Tests for Toggle States

Important test types besides functionality: security, performance, usability,
compatibility, and backward compatibility.

3.3.4 Risks of Using Toggles
LO-3.3.4 Understand risks associated with Toggles (K2)

The toggles bring flexibility, hence more complexity, which leads to possible
risks, such as: complicated configuration, too many conditions to control as a
result of many types of toggles, toggles combinations and the combinations
with the different types of users. To better control these conditions, all the data
or changes in data (e.g., configuration, provisioning of users, on/off the feature,
etc.) need to be documented and had better be separated, to create as little
dependency as possible; in addition, enable clean-up and rollback procedures
where possible.

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 39 of 52

In a testing project, it is sometimes recommended to set up a bug hunting
session for users (testers or others) testing the system and hunting for bugs.
These individuals can receive recognition and compensation for reporting bugs,
especially those pertaining to exploits and vulnerabilities. This can be done
internally at the company, which may create more collaborations if done in
groups or mixed teams between the different departments, as well as if it is
encouraged by the product company to be done by the crowd.

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 40 of 52

Chapter 4 - Operations in DevOps

Keywords: Monitoring, Monitors, Alerts, Controllability, Observability

LO-4.1.1 Recall the concepts of monitoring production system (K1)

LO-4.1.2 Recall the importance of various types of alerts (K1)

LO-4.1.3 Understand the differences between testing monitors and
testing alerts (K2)

LO-4.1.4 Understand testing of logging features on a production server
(K2)

HO # Description

HO-4.1.3 Demonstrate alerts in a system using sets of predefined tests
for monitors (HO-0)

4.1 Monitoring Production Systems
Monitoring is the process of maintaining surveillance over the existence and
magnitude of state change and data flow in a system.

4.1.1 Monitoring
LO-4.1.1 Recall the concepts of monitoring production system (K1)

Monitoring aims to identify faults and assist in their subsequent elimination.
The techniques used in monitoring information systems intersect the fields of
real-time processing, statistics, and data analysis. A set of software components
used for data collection, their processing, and presentation is called a
monitoring system.

4.1.2 Alerting
LO-4.1.2 Recall the importance of various types of alerts (K1)

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 41 of 52

Alerting is the capability of a monitoring system to detect and notify the
operators about meaningful events that denote a grave change of state. The
notification is referred to as an alert and is a simple message that may take
multiple forms: email, SMS, instant message (IM), or a phone call.

4.1.3 Testing of Monitors and Alerts
LO-4.1.3 Understand the differences between testing monitors and

testing alerts (K2)

HO-4.1.3 Demonstrate alerts in a system using sets of predefined tests
for monitors (HO-0)

The main usage of the monitoring and alerting capabilities is to obtain
information – for example, when issues occur in a system based on
error codes, the unavailability of features or services, the faults of critical code
areas using traps (e.g., SNMP traps for failure in money-related transactions),
performance issues (both machine-based and application-based), security
issues, usability issues and information about user behavior understanding.

The monitoring and alerts that we have in the systems have to be tested as
well. The test types that can be taken for testing the monitoring may include
the following:

● Test configuration steps and options
● Test working of monitor by producing situations to be monitored and

alerted
● Testability of Monitors

● Controllability – Ability to provide data to trigger monitors and
alerts

● Observability – Ability to observe the actions taken
● Test removal of monitors

The following test types can be taken for testing the alerts:
● Testing of rules
● Test modification of rules and alerts
● Test the alerts following and while removal of monitors

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 42 of 52

4.1.4 Log Testing
LO-4.1.4 Understand testing of logging features on a production server

(K2)

In addition to monitoring and alerts, the system generates logs and the log
types and/or log levels are defined as well. The log level is usually set up in
order to provide minimal information or extensive information, for better
analysis and troubleshooting activities, thus the correctness of the data
provided in the logs needs to be tested. The logging mechanism may consume
resources from the system, hence, it is important to know what the required log
level to be deployed is, and to test that it provides the required information for
this level, as well as consumes minimal resources from the system (e.g., usually
low log level is configured, such as errors only, in order to prevent I/O
consumption). In addition, for maintenance purposes, it is important to test the
resource consumption and the behavior of the system when the log level is
high, and more information is provided through the logs.

There are more tests that need to be performed from the functionality
perspective for the logs, such as: correctness of the info in the logs, log size,
archival, timestamping, unrestricted data encryption/masking, appropriate
classification of events (info, warning, error, etc.). As logs create load on the
system, performance benchmark is required as well, in order to measure the
load and the way that the system performs under normal and heavy conditions
while the different log levels are set. In addition, there could be different types
of logs (or log files), such as “all logs” only “error logs”, etc. They also need to
be tested and optimized as well as to test the traffic which they generate.

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 43 of 52

Chapter 5 - DevOps and Cloud

Keywords: Infrastructure as a Service (IaaS), Hardware as a Service (HaaS),
Platform as a Service (PaaS), Software as a Service (SaaS), IT farm, application
containerization

LO-5.1.0 Recall the main forms of cloud computing (K1)

LO-5.1.3 Recall the main advantages of virtualization in the cloud (K1)

LO-5.1.4 Understand the main advantages of cloud computing (K2)

LO-5.1.5 Recall the main differences between Virtual Machines and
Containers (K1)

HO # Description

HO-5.1.4 Demonstrate how Dockers can be applied on a container in a
virtualized environment (HO-0)

5.1 Introduction to DevOps with Cloud

Cloud computing consists of three distinct types of computing services,
delivered remotely to clients via the internet.
The common cloud business model is that customers typically pay a monthly or
annual service fee to the cloud-based providers, to gain access to systems that
deliver software as a service, platforms as a service and infrastructure as a
service to subscribers. Customers who subscribe to cloud computing services
can harvest a variety of benefits, depending on their business needs at a given
point in time.
The cloud solutions are similar to what used to be called “hosting centers”, but
with additional integration, programming, and operational abilities.

5.1.1 IAAS, PAAS, SAAS
LO-5.1.0 Recall the main forms of cloud computing (K1)

IaaS (Infrastructure as a Service) allows clients to remotely use IT hardware
and resources on a “pay-as-you-go” basis from a business model perspective.

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 44 of 52

It is also referred to as HaaS (Hardware as a Service). Major IaaS players
include companies such as IBM, Google, and Amazon. IaaS employs
virtualization, a method of creating and managing infrastructure resources in
the cloud. IaaS provides small or medium size companies with a major
advantage, since it allows them to gradually expand their IT infrastructure
without the need for large capital investments in hardware and peripheral
systems. If, in the past, each company would create its own IT farm – even for
internal use – then the IaaS comes as an alternative option. It is important to
note that there are companies which business will impede to use IaaS (e.g., for
security reasons – although most of these platforms support a high level of
security).

PaaS (Platform as a Service) provides the customers with the ability to develop
and publish customized applications in a hosted environment via the web. It
represents a new model for software development that is rapidly increasing in
popularity. An example of PaaS is Salesforce.com. PaaS provides a framework
for agile software development, testing, deployment, and maintenance in an
integrated environment. Like SaaS, the primary benefit of PaaS is a lower use
cost. PaaS providers handle platform maintenance and system upgrades,
resulting in a more efficient and cost-effective solution mainly for enterprise
software development.

SaaS (Software as a Service) provides the customers with the ability to use
software applications on a remote basis via an internet web browser. Software
as a service is also referred to as “software on demand”.
Customers can access SaaS applications from anywhere via the web as service
providers host applications and their associated data at their location. The
primary benefit of SaaS is a lower use cost, since subscriber fees require a
much smaller investment than what is typically encountered under the
traditional model of software delivery. Licensing fees, installation costs,
maintenance fees and support fees that are routinely associated with the
traditional model of software delivery can be virtually eliminated by
subscribing to the SaaS model of software delivery. Examples of SaaS include
Google Applications and internet-based email applications such as Yahoo! Mail,
Hotmail, and Gmail.

DevOps has a great value in the development of SaaS applications that run on
the very infrastructure the cloud provider offers, DevOps also can be utilized to
assist with the migration of applications to other cloud computing models such
as platform as a service (PaaS) and infrastructure as a service (IaaS).

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 45 of 52

5.1.2 Fitment of Cloud in DevOps

The main advantages of cloud computing are: 24/7 availability, flexibility related
to the capacity of the system, ability to easily scale up and down per the
required consumption, automated and rapid updates on the software, enhanced
collaboration, reduced maintenance, and the ability to provide a frame to scale
up small companies that now can reduce their IT costs.

5.1.3 Virtualization and Cloud Computing
LO-5.1.3 Recall the main advantages of virtualization in the cloud (K1)

The cloud is mainly based on virtualization.

The main advantages of the virtualization in the cloud are:

● Offering the ability to access powerful IT resources on an incremental
basis

● Levelling the playing field for small and medium sized organizations

● Providing the necessary tools and technology to compete in the global
marketplace

● Avoiding the requisite investment in on premise IT resources

This is also applicable for customers who subscribe to computing services
delivered via the “cloud”. They can greatly reduce the IT service expenditures
for their organizations, and gain access to more agile and flexible enterprise
level computing services, in the process.

5.1.4 Application Containerization
LO-5.1.4 Understand the main advantages of the cloud computing (K2)

HO-5.1.4 Demonstrate how Dockers can be applied on a container in a
virtualized environment (HO-0)

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 46 of 52

The fact that cloud computing is centralized by nature, this provides DevOps
automation with, for example, a standard and centralized platform for testing,
deployment, and production. Using a cloud platform solves many issues with
distributed complexity.

In addition, DevOps automation is becoming more cloud-centric. Most public
and private cloud computing providers support DevOps systemically on their
platforms, which include continuous integration and continuous development
tools. This tight integration lowers the costs associated with on-premises
DevOps automation technology and provides centralized governance and
control for a sound DevOps process.

Virtualization has been in existence for long and its adoption is increasing day
by day, and the utilization resources are becoming more and more developed
and necessary. The DevOps approach has shifted even further the enhancement
of the virtualization world, and more advanced technologies have grown in
these virtual fields, such as Docker containers. Docker containers are designed
to run on every environment, from physical computers to virtual machines,
from bare-metal, Clouds, etc.

Application containerization is a lightweight alternative to having a virtual
machine that includes the encapsulation of an application with its own operating
system in one place – a container. The term “container” takes its meaning from
logistics terminology, packaging container.

5.1.5 Virtual Machines and Containers
LO-5.1.5 Recall the main differences between Virtual Machines and

Containers (K1)

To create a cloud application, we can use microservices as an architectural
approach, where each application is built as a set of services. Each service runs
its own processes and communicates through application programming
interfaces (APIs).

Docker works by providing a standard way to run your code. Docker is an
operating system for containers. The way a virtual machine virtualizes
(removes the need to directly manage) server hardware, containers virtualize
the operating system of a server. Docker is installed on each server and
provides simple commands you can use to build, start, or stop containers.

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 47 of 52

Containers are an abstraction at the app layer that packages code and
dependencies together. Multiple containers can run on the same machine and
share the OS kernel with other containers, each running as isolated processes
in user space.

The current, most popular cloud platforms are: Amazon Web Services (AWS),
Microsoft Azure, Google Cloud Platform and Alibaba Cloud.

Chapter 6 - Various Tools and Technologies

Keywords: Infrastructure as code (IaC), binary repository, Research &
Development (R&D), software repository

LO-6.1.0 Recall the main advantages of modelling infrastructure with
code (K1)

LO-6.1.3 Apply the main features of an infrastructure as a code tool (K3)

HO # Description

HO-6.1.3 Demonstrate how various IaC tools can be orchestrated and
working in a harmonized way (HO-0)

6.1 Infrastructure and Repositories
LO-6.1.0 Recall the main advantages of modelling infrastructure with

code (K1)

6.1.1 Infrastructure as Code (IaC)

Infrastructure as code (IaC) is a lightweight and data-driven way of managing
and provisioning the system’s infrastructure (networks, virtual machines, load
balancers, and connection topology) – basically treating your servers,
databases, networks, and other infrastructure like software. It is done in a
descriptive model, using the same versioning as a DevOps team uses for source

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 48 of 52

code, rather than managing it with physical hardware configuration or
interactive configuration tools.
It has similar principles as a code management: the same source code
generates the same binary, and an IaC model generates the same environment
every time it is applied – e.g., the release pipeline executes the model to
configure target environments.
That way, any time the team members need to make changes, they can edit the
source code and not the target environment.
IaC is a key DevOps practice and is used in conjunction with continuous
delivery.

The main advantages of having modelized IaC are:

● Faster and simpler
● Avoiding deployment inconsistencies of the system’s configuration
● Reducing risks
● Increasing R&D’s efficiency and productivity, especially in the cloud
● Cost reduction & saving

6.1.2 Binary Repositories

A binary repository, or software repository, or “repo” for short, is a storage
location for software packages. Usually, a table of contents is stored, as well as
metadata. Repositories manage group packages as well. Sometimes, the
grouping is for a programming language, sometimes for an entire operating
system, sometimes the license of the contents is the criteria.

The server side of a software repository is typically managed by source control
or repository managers. There are repository managers which allow for the
aggregation to other repository locations into one URL and provide a caching
proxy. While creating continuous builds and generating a lot of artifacts, the
repository managers often store them in a central place, and it is important that
these repository managers will also be in charge to automatically delete the
builds which are not released.
On the client side, package managers help installing from and updating the
repositories.

As part of the development lifecycle, the source code is continuously being
built into binary artifacts using continuous integration. This may interact with a
binary repository manager, similar to a situation a programmer would face by
getting artifacts from the repositories and pushing builds there.

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 49 of 52

A tight integration with CI servers enables to store important metadata such as:

● Which user triggered this build? (manually? or by committing to version
control?)

● Which modules were built?
● Which sources were used? (commit id, revision, branch)
● Which dependencies were used?
● Which environment variables were used?
● Which packages were installed?

6.1.3 IaC Tools
LO-6.1.3 Apply the main features of an infrastructure as a code tool (K3)

HO-6.1.3 Demonstrate how various of IaC tools can be orchestrated and
working in a harmonized way (HO-0)

The IaC tools are classified in the following two categories, which often might
overlap:

● Configuration orchestration tool: these tools are designed to automate the
deployment of our infrastructure.

● Configuration management tools: these tools are designed to help
configure the software and systems on the provisioned infrastructure.

Some of the current IaC tools allow developers to orchestrate/provision
infrastructure as well as configure it, and since the infrastructure gets more
complex, it is common to see both types of tools used.
Here are some of the current tools that are popular in the IaC landscape:

Terraform is an infrastructure-provisioning tool that supports multiple cloud
providers. It allows developers to represent their infrastructure, regardless of
whether it is AWS, Google Cloud or Azure, in a well-defined language known
as HCL. Terraform is highly extensible via plugins and has a very strong
community around it that produces great open-source modules for provisioning
chunks of infrastructure.

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 50 of 52

AWS CloudFormation is not cloud agnostic and is dedicated to provisioning
infrastructure within AWS accounts. It allows for the representation of the
AWS infrastructure in JSON or YAML configuration files that can execute to
create, update, and destroy resources. CloudFormation is very well integrated
into the AWS ecosystem and has developed a lot of features for previewing,
rolling back, and managing resource changes.

Chef falls under the configuration management tooling. It allows for the
creation of recipes and cookbooks that define the exact steps needed to reach
the necessary configuration of the application. Chef, like Terraform, supports
multiple cloud providers. It uses the commonly known language, Ruby. It is
typically used for configuring Elastic Compute (EC2) instances and even on-
premises servers.

Puppet is another Ruby-based configuration management tool, like Chef. The
difference between them is that Puppet is known as a declarative tool. This
means that developers define what their infrastructure is supposed to be, and
Puppet figures out how to make that possible.

Ansible is an infrastructure automation tool from Red Hat. Developers describe
how their components and system relate to one another. It is meant to manage
and codify systems end to end rather than independently. These definitions are
written in YAML and are known as Playbooks.

Juju is an IaC tool from Ubuntu, which allows developers to represent their
infrastructure as charms which are sets of scripts that deploy and operate
systems. These charms can be packed together as bundles to deploy the entire
infrastructure for an application.

uDeploy is an automation deployment framework that reduces deployment
errors and improves efficiency, correctness, and traceability. The IBM
UrbanCode Deploy is a tool for automating application deployments through
our environments. It is designed to facilitate rapid feedback and continuous
delivery in agile development while providing the audit trails, versioning and
approvals needed in production.

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 51 of 52

JFrog Artifactory is a tool designed to store the binary output of the build
process for use in distribution and deployment. Artifactory provides support for
several of package formats such as Maven, Debian, NPM, Helm, Ruby, Python,
and Docker. JFrog offers high availability, replication, disaster recovery,
scalability, and works with many on-premise and cloud storage offerings.

This for sure is not a comprehensive list. There are constantly new tools being
developed in both the configuration orchestration and management landscape.

6.1.4 Other Tools
HO-6.1.4 Perform a guided exercise to search for most updated existing

tools on the market for DevOps, including those which support
specific stages, as well as tools that are suites and providing
holistic solutions (HO-1)

DevOps brings an overall vision of / perspective on the variety of tools that
exist on the market, and which are supporting its holistic approach.
The following image may describe this variety of tools, and its continuous
update.

DOu Certified Tester in DevOps (CTD-FL) Syllabus

Version 1.2 March, 2021 Page 52 of 52

References

This document has been designed and created utilizing first-hand experiences
gathered from the industry by the SMEs involved in creating DevOps United.

● A Taxonomy for Learning, Teaching, and Assessing: A Revision of
Bloom’s Taxonomy of Educational Objectives – L. Anderson, P. W.
Airasian, and D. R. Krathwohl (Allyn & Bacon 2001)

● Revised Bloom’s Taxonomy Action Verbs. Available at
https://www.apu.edu/live_data/files/333/blooms_taxonomy_action_verbs.p
df

● [DevOps for the Modern Enterprise] Winning Practices to Transform
Legacy IT Organizations – Mirco Hering (April 2018)

● [The DevOps Handbook] How to Create World-Class Agility, Reliability,
& Security in Technology Organizations – Gene Kim, Jez Humble, John
Willis & Patrick Debois (October 2016 edition)

● [Embedding DevOps in the Enterprise] Cutter IT Journal (November
2011 edition)

● [DevOps Guide] The IT Revolution (2015 edition)
● [DevOps for Dummies] IBM – Sanjeev Sharma & Bernie Coyne (John

Wiley & Sons, 2nd edition 2015)
● [ISTQB-FL 2018] ISTQB Foundation Level Syllabus version 2018.

Available at https://www.istqb.org/downloads/category/51-ctfl2018.html
● [Agile Alliance organization] https://www.agilealliance.org

https://www.apu.edu/live_data/files/333/blooms_taxonomy_action_verbs.pdf
https://www.apu.edu/live_data/files/333/blooms_taxonomy_action_verbs.pdf
https://www.apu.edu/live_data/files/333/blooms_taxonomy_action_verbs.pdf
https://www.apu.edu/live_data/files/333/blooms_taxonomy_action_verbs.pdf
https://www.istqb.org/downloads/category/51-ctfl2018.html
https://www.istqb.org/downloads/category/51-ctfl2018.html
https://www.istqb.org/downloads/category/51-ctfl2018.html
https://www.agilealliance.org/
https://www.agilealliance.org/
https://www.agilealliance.org/

